
38th International Symposium on Automation and Robotics in Construction (ISARC 2021) 

A Deep Learning-based Multi-model Ensemble Method for 

Crack Detection in Concrete Structures  

Luqman Alia, Farag Sallabia, Wasif Khana, Fady Alnajjara,* and Hamad Aljassmib,c 

aDepartment of Computer Science and Software Engineering, College of Information Technology, UAEU, Al Ain 

15551, United Arab Emirates 
bDepartment of Civil Engineering, College of Engineering, UAEU, Al Ain 15551, United Arab Emirates 

cEmirates Center for Mobility Research, UAEU, Al Ain 15551, United Arab Emirates 

E-mail: 201990024@uaeu.ac.ae, f.sallabi@uaeu.ac.ae, 201990025@uaeu.ac.ae, fady.alnajjar@uaeu.ac.ae,  

h.aljasmi@uaeu.ac.ae  

 

Abstract –  

In civil infrastructures such as buildings, bridges, 

and tunnels, cracks are initial signs of degradation, 

which affect the structure's current and future 

performance adversely. Optimum maintenance plans 

in terms of cost and safety are important to evaluate 

the degree of deterioration of a structure. Manual 

inspection is usually performed, and cracks detected 

during inspections could help the inspectors to 

understand the damaged state of the concrete 

structures. However, these inspections are costly, 

laborious, and easily prone to human error. An 

automatic and fast crack detection at the earliest stage 

is crucial to avoid further degradation of the structure. 

In the past decades, various deep learning techniques 

have been introduced by researchers to automate the 

crack detection task. This paper introduces a deep 

learning-based multi-model ensemble approach for 

crack detection in concrete structures. The proposed 

architecture consists of five different customized 

convolutional neural networks (CNN) trained on data 

set created from two public datasets. The dataset 

consists of 8400 crack and non-crack images having a 

resolution of 224 * 224. Detailed experiments show 

that the majority voting ensemble technique shows 

better performance for crack detection in concrete 

structures. The accuracy of the individual CNN 

models 1, 2, 3, and 4 is recorded to be 95%,96%, 95%, 

and 97%, respectively, while the accuracy of the 

ensemble techniques is recorded to be 98%. 
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1 Introduction 

Cracks are one of the first signs of degradation in any 

civil infrastructure, which requires proper attention and 

inspection in a timely manner. Traditionally, a team of 

experts carries out a visual inspection to check if there 

are any defects (cracking, spalling, defective joints, 

corrosion, potholes, etc.) in structures and report them for 

proper maintenance. Visual inspection is challenging and 

expensive, time-consuming, and laborious as it requires 

several trained professionals for the inspection. 

Moreover, visual inspection is not always reliable; failure 

to detect problems at the earliest stage can lead to 

disastrous effects. To overcome these limitations, a 

computer vision-based system is alternatively used to aid 

civil engineers during the inspection of concrete 

structures. 

Normally, a vision-based crack detection system 

takes images as an input and gives them to the crack 

detection algorithm for classifying and localizing the 

cracks. The input images can be acquired using a digital 

camera, Unmanned Ariel Vehicle (UAV), or a 

smartphone. Most of the early crack detection systems 

are based on image processing methods such as 

thresholding [1], edge detection [2], filtering [3-6], fuzzy 

[7,8], percolation [9], and region growing [10]. However, 

the accuracy of these approaches heavily relies on the 

image focal length, quality, and capturing environment. 

Machine learning-based crack detection methods have 

improved the weaknesses of the rule-based approaches 

and can be categorized into traditional and deep learning 

approaches.  

In traditional approaches, various features such as 

mean and variance [11], histogram [12,13], texture [14], 

Local Binary Patterns (LBP) [15] and multi-features [16] 

are extracted from the images. The obtained features are 

then given to various classifiers such as Support Vector 

Machine (SVM) [17,18], Decision Tree (DT), Genetic 

Algorithm [20], and various other classifiers for 

evaluation purposes. Feature extraction is a challenging 

task as it requires domain knowledge to extract the 

relevant information from the images which reflect the 
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actual cracks.  

To overcome the limitation of traditional approaches, 

an automatic feature learning technique such as deep 

learning is used, which automatically extracts useful 

features from raw images. Deep learning models have 

shown enormous performance in solving various 

concrete crack detection problems [21-23][33]. Zhang et 

al. [24] proposed CNN architecture consisting of six 

layers for crack detection in pavement structures using 

one million image patches of size 99×99. The patches are 

obtained from 500 images having a resolution of 

3264×2448 collected by using a smartphone. Wang et al. 

[22] trained a five-layered CNN architecture for crack 

detection in pavement structure using 760 K image 

patches. Ali et al. [23] combined CNN architecture with 

a sliding window approach for crack detection and 

localization in pavement structure using 4k patches 

created from images acquired by using an unmanned 

aerial vehicle (UAV). Similarly, Cha et al. [25] 

performed CNN-based crack detection and sliding 

window-based crack localization in concrete structure 

using 40k images. Xu et al. [26] used 6k images and 28 

layered end-to-end CNN architecture for crack detection 

in bridge structures.  Pauly [27] investigate the effect of 

network depth on the performance of the pavement crack 

detection model and showed that network generalization 

ability could be enhanced by increasing the network 

depth. Zhang et al. [28] proposed CrackNet, a five-

layered CNN architecture capable of detecting cracks in 

3D asphalt surfaces at the pixel level. Due to the high 

computational time of the network and difficulty in 

detecting thin cracks, the authors improved the 

architecture by proposing CrackNet II [29], which can 

detect hairline cracks and has low processing time. 

Transfer learning models make CNN more applicable 

with less computational cost Transfer learning models 

make CNN more applicable without incurring high 

computational costs or necessitating knowledge of how 

CNNs work. Gopalakrishnan et al. [30] developed a 

pavement crack detection model using pre-trained VGG 

16 architecture using a small amount of training data. The 

proposed transfer learning model outperformed previous 

CNN models in terms of reliability, speed, and ease of 

implementation. Zhang and Chang [31] developed a 

pavement crack detection system using an Image-Net 

pre-trained model and 80k image patches. Wilson et al. 

[32] proposed a robust concrete crack detection model 

system based on the VGG-16 model using 3.5k images 

acquired by using UAV.     

Although several deep learning algorithms are 

available for crack detection in concrete structures, 

however, none of them is completely accurate, and each 

method makes errors during prediction. It is still difficult 

to decide on the architecture and parameters of each 

model. Individual models may perform well for one 

classification task but not for another. Ensemble 

classifiers, on the other hand, aggregate the predictions 

of numerous independent models into a single prediction 

depending on criteria such as majority voting, 

unweighted and weighted average, and so on. Training 

multiple models and combining their predictions may 

result in better performance than individual models 

because the ensemble classifier explores a larger solution 

space from the set of individual classifier predictions. 

Therefore, this paper presents an ensemble classifier 

based on five different individual customized CNN 

models. The detailed experiments are evaluated on a 

dataset consisting of 8400 crack and non-crack images 

having a resolution of 224×224. The results are validated 

on different performance metrics such as accuracy, 

precision, recall, and F-1 score. 

2 System Model and Assumptions 

The proposed system is comprised of the three 

modules listed below: 

      (1) Database Creation 

(2) Ensemble CNN modeling 

(3) Classification Results.  

 

In database creation, data is prepared and given as an 

input to CNN models built from scratch with varying 

parameters. The predictions obtained from the multi 

CNN models are combined by using ensemble methods 

such as Majority voting, weighted and unweighted 

average. Each module is discussed in detail below.   

Database

Classification 

Results 

Ensemble Classifier

(Majority voting, 

weighted, 

unweighted average)

CNN Model#1

CNN Model#2

CNN Model#4

CNN Model#5

CNN Model#3

Deep Learning Models

Performance Metrices

Figure 1: Overview of the proposed system 
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2.1 Database Creation 

The dataset in the proposed system is created from 

publicly available datasets by Özgenel [34] and 

Dorafshan [35]. The main reason for combining the two 

datasets is to provide enough variance in the dataset's 

samples. The dataset consists of 16.8K image patches 

having a dimension of 224*224 pixels. As shown in 

Table 1, the patches were chosen at random from the 

datasets, with the split ratio for the training, validation, 

and testing sets being 60:20:20. Manual labeling was 

done for the crack and non-crack classes, each of which 

has an equal number of image patches. 

Figure 2: Samples of crack and non-crack patches in the 

dataset 

 

Table 1: Total number of samples used in Training, 

validation, and Testing 

2.2 Convolutional Neural Network (CNN) 

CNN is the most widely used deep learning network. 

CNN mainly comprises convolutional, activation, and 

pooling layers. The main function of these layers is to 

introduce non-linearity, extract relevant information 

(features) from input images and reduce its 

dimensionality to enhance network generalization. The 

function of each layer is described in detail below.   

2.2.1 Convolutional Layer 

CNN's convolutional layer extracts useful 

information from images and preserves the spatial 

relationship between its pixels. The filter slides over the 

image pixels, add them together and add bias to it to 

obtain the output feature vector as shown in Equation 1.  

𝑂 =  ∑(𝐼𝑘×𝑘 + 𝑊𝑘×𝑘) + 𝐵𝑖𝑎𝑠    (1) 

The convolution operation is performed on the input 

receptive field  𝐼𝑘×𝑘  where 𝑘 represents the size of the 

kernel.  𝑊𝑘×𝑘 represent the filters weights which will be 

convolved over the input image, and 𝐵  represent the 

filter bias. The obtained feature map is given as an input 

to the activation layer.  

2.2.2 Max-Pooling Layer 

The max-pooling layer performs a down sampling 

operation on the input array to reduce its dimensionality. 

The max-pooling layer divides the input array into small 

non-overlapping blocks and considers the maximum 

value of each block which helps in the reduction of model 

parameters and computational time. 

2.2.3 Activation Layer 

The activation layer performs an elementwise 

operation on the features coming from the convolutional 

layer to set the non-negative values to zero. This layer 

also introduces non-linearity to the feature map to ensure 

its usability. The mathematical operation of the activation 

layer is depicted in Equation 2 below.  

    𝜎(𝐼) = max(0, 𝐼)      (2) 

Where 𝐼 represents the input feature vector.  

2.2.4 Fully Connected Layer 

The fully connected layer takes the results of the 

convolutional and max-pooling layer and performs 

logical inference on it. The input is flattening from 3D to 

1D before giving as an input to the fully connected layer. 

The mathematical operation of a fully connected layer is 

shown in equation 3.  

      𝑂𝑉𝑜×1 = 𝑊𝑉𝑜×𝑉𝑖  
𝐼𝑉𝑖×1 .  𝐵𝑉𝑜×1            (3)  

Where 𝑂 represents the output, 𝑉𝑖 and 𝑉𝑜 shows the size 

of the input and output vector. Additionally, the weight 

and matrix biased are represented by 𝑊 and 𝐵. 

2.2.5 Softmax Layer 

The softmax layer is located at the end of the CNN 

architecture and is used for the prediction of classes. The 

softmax layer takes a vector of scores 𝑥 ∈ 𝑆𝑛  and 

calculate probabilities 𝑃 ∈ 𝑆𝑛 from the input scores. The 

mathematical operation is shown in Equation 4.  

     𝑃 = (
𝑃1
⋮

𝑃𝑛
)  where  𝑃 =

𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝑛

𝑗=1

       (4) 

Multiple models have been used in the proposed work. 

The summary of each model is shown in Table 2. 

2.3 Ensemble Modelling  

Ensemble CNN model consists of individually 

trained CNN models, which combines the prediction 

from multiple models to classify a new instance.  In the 

proposed work, five different customized CNN models 

are used, and the predictions are aggregated to improve 

the system accuracy. Firstly, all the CNN models are 

trained individually on the same training data, and then 

the models are combined together for accurate prediction. 

 

Data 

 

Training data Validation Data 

Testing Data 

Crack Non-Crack Crack Non- Crack 
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In the proposed work, three model different model 

combination techniques have been used: Majority voting, 

unweighted and weighted ensemble, as explained in 

detail below. The overall process of ensemble modeling 

is explained in Figure 3.  

 

 

Figure 3: Representation of Ensemble Modeling 

process.  

2.3.1 Majority Voting 

In majority voting, the prediction of each model for a 

sample of data is known as a vote. The prediction having 

the majority votes from all the models is considered as 

the final prediction of the ensemble model. Suppose the 

prediction of CNN 1, 2, and 3 is label 0 while the 

prediction of CNN 4 and 5 is label 1. Then, the final 

prediction of the ensemble model is label 0 because of 

the majority votes. The mathematical representation of 

majority vote probabilities is shown in Equation (5) and  

(6) below.  

 

𝑃́𝑖 =  
∑ 𝑀(𝑃𝑖𝑗)𝑛

𝑗=1

𝑛
 , 𝑖 = 1,2, … … … , 𝑚     (5) 

Where  𝑀(𝑃𝑖𝑗) = {
1  𝑖𝑓  𝑃𝑖𝑗 = max (𝐶𝑁𝑁(𝑗))

0                         𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
        (6) 

 

Equation (2) combines all the votes assigned by the CNN 

model to 𝑗. 𝑛 represent the total number of voters and are 

used for normalization purposes. In the majority voting 

approach, each input image will be assigned a class, and 

the vote of every model is considered equally without 

looking at their individual accuracies.    

 

2.3.2 Unweighted and Weighted Ensemble 

In an unweighted ensemble, the final prediction of the 

model is the average of the outcomes of all the CNN 

models. Averaging outcomes of CNN models decrease 

variance between them and increase the generalization 

ability of the ensemble model. The averaging of the CNN 

models' output is shown in Equation (7) in detail. 

 

 𝑃𝑖
𝑘 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑘(𝑂𝑖) =

𝑂𝑖
𝑘

∑ exp (𝑂𝑗
𝑘)𝑛

𝑗=1

            (7) 

 

In the above equation, 𝑛 represent the number of 

classes, 𝑃𝑖
𝑘is the output probability for unit 𝑖 in class 𝑘, 

𝑂𝑖
𝑘  is the output of kth CNN model for ith unit. In a 

weighted ensemble, weights are assigned to voters. The 

model is considered based on weighted majority voting 

and the sum of weighted probabilities. The weights to the 

voters are adjusted either by looking at their accuracies 

or by considering them as parameters and performing the 

optimal adjustment.  

3 Experiments and Results 

The experiments were performed on the dataset 

explained in section 2.1. The ensemble model consists of 

five different CNN models having different architecture 

and parameters, as shown in Table 2. CNN models and 

their ensembles are evaluated based on their accuracy, 

precision, recall, and F score as shown in Equation (8), 

(9), (10), and (11), respectively. 

 

   𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
           (8) 

 

   𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
           (9) 

 

                   𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                         (10) 

 

        𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 .  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
             (11) 

 

TP (True Positive) and TN (True Negative) values 

show the correctly identified crack and non-crack 

samples, while FP (False Positive) and FN (False 

Negative) represent the incorrectly identified crack and 

non-crack samples. All the experiments were performed 

using python programming on an Alienware Arura R8 

core i9-9900k CPU @3.60 GHz desktop system with 32 

GB RAM and an NVIDIA GeForce RTX 2080 GPU. The 

number of epochs for tall the models was chosen 20 as 

the loss of all the models reach a minimum level, and 

there was no further improvement in the model's 

accuracy. In the proposed work, five different CNN 

architectures were trained for 20 epochs which results in 

100 trained networks. The best-performing trained 

network of each model was selected based on the 

evaluation metrics, as shown in Table 3. 

In the proposed work, all the CNN architectures were 

built from scratch, and their various parameters were 

fine-tuned to achieve high performance. A 

comprehensive visual evaluation of all the CNN models 

was performed, the training and validation loss curves 

were plotted as shown in Figures 4,5, 6, 7 and 8. The 

confusion matrices of all the models are summarized in 

Table 3. 

In CNN model 1, the number of parameters is 1.19 

million, and the number of convolutional layers and max-

pooling layers are 3 and 3, respectively. The accuracy  

Image Database
Select diverse 

model combination

Train and Validate 

individual models

Selection and

creation of

ensemble model

Validation of

Ensemble Models

Selection of best 

ensemble to use for 

crack detection
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and loss graph of the training and validation of CNN 

model 1 is shown in Figure 4. In the graph, both the 

training and validation curves show little divergence, 

which shows that the model is not subjected to overfitting. 

The testing accuracy, precision, recall, and F1 score of 

CNN model is 0.928. 0.982, 0.921, and 0.951, 

respectively, as shown in Table 3. 

Similarly, CNN model 2 consists of 6 convolutional 

and 5 model max-pooling layer. The architecture has a 

total of 0.92 million papers. The accuracy and loss graph 

shows that the architecture has less tendency towards 

overfitting, as shown in Figure 5. The testing accuracy, 

precision, recall, and F1 score of the CNN model 2 is 

0.970, 0.994, 0.971, and 0.983, respectively.   

 

 

 

 

 

 

Figure 4: Training and Validation of CNN model 1 

(Accuracy and loss graphs) 

CNN Model 1

Model1 Model2 Model 3 Model 4 Model 5  

Input Layer (224×224) 

Conv1 Conv1 Conv1 Conv1 Conv1 

Actv1 (ReLU) Max-Pool1 Actv1 (ReLU) Actv1 (ReLU) Max-Pool1 

Max-Pool1 Actv1 (ReLU) Max-Pool1 Max-Pool1 Actv1 (ReLU) 

Dropout (0.05) Conv2 Dropout (0.05) Dropout (0.05) Conv2 

Conv2 Actv2 (ReLU) Conv2 Conv2 Max-Pool2 

Actv2 (ReLU) Max-Pool2 Actv2 (ReLU) Actv2 (ReLU) Dropout (0.05) 

Max-Pool2 Dropout (0.05) Max-Pool2 Max-Pool2 Conv3 

Dropout (0.05) Conv3 Dropout (0.05) Dropout (0.05) Actv3 (ReLU) 

Conv3 Actv3 (ReLU) Conv3 Conv3 Max-Pool3 

Actv3 (ReLU) Conv4 Actv3 (ReLU) Actv3 (ReLU) Dropout (0.05) 

Max-Pool3  Actv4 (ReLU) Max-Pooling 3 Max-Pool3 Flatten1→FC1

→Actv5 

→FC2 

Dropout (0.05) Max-Pool3 Dropout (0.05) Dropout (0.05) Softmax 

Flatten1→FC1→Act

v4 →FC2→Actv5 

Dropout (0.05) Conv4 Conv4 Parameters = 

0.83 

Softmax Conv5 Actv4 (ReLU) Actv4 (ReLU)  

Parameters= 1.19 M  Max-Pool4 Max-Pooling 4 Max-Pool4 

*conv = 

Convolutional. 

*Max-Pool= Max-

pooling 

* FS = Filter Size 

*ReLU = Rectified 

Linear Unit 

*FC = Fully 

Connected  

*Actv : Activation 

layer 

*M = Millions 

Conv6 Dropout (0.05) Dropout (0.05) 

Actv5 (ReLU) Flatten1→FC1→A

ctv5→FC2 

Conv5 

Max-Pool5 Softmax Actv5 (ReLU) 

Dropout (0.05) Parameters = 0.32 Max-Pool5 

Flatten1→FC1→ 

Actv6→FC2 

 Dropout (0.05) 

Softmax Flatten1→FC1→

Actv6→FC2 

Parameters = 0.92 Softmax 

 Parameters = 0.11 

• All convolutional Layers: (32, 3×3 convolutions, Stride= 1×1, No padding). 

• All Max-pooling layer: Filter size (FS 3×3) 

Table 2: Architecture and parameters of models   
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Figure 5: Training and Validation of CNN model 2 

(Accuracy and loss graphs) 

 

Figure 6 shows the accuracy and loss graph of 

training and validation of CNN model 3. The graph 

shows no signs of the model overfitting. The architecture 

of model 3 consists of 4 convolutional, 4 max-pooling, 

and 0.32 million parameters. The testing accuracy, 

precision, recall, and F1 score of the model is 0.953, 

0.996, 0.950, and 0.973 respectively.  Moreover, the 

number of parameters in CNN model 4 is 0.11 million. 

The architecture consists of   5 convolutional and 5 max-

pooling layers.  

 

Figure 6: Training and Validation of CNN model 3 

(Accuracy and loss graphs) 

The accuracy and loss graph of CNN model 4 shows 

no overfitting, as shown in Figure 7. The testing accuracy, 

precision-recall and F score of the model are 0.966, 0.995, 

0.967, and 0.981, respectively.   

 

Figure 7: Training and Validation of CNN model 4 

(Accuracy and loss graphs) 

 Moreover, the architecture of the CNN model 5 

consists of 3 convolutional and 3 max-pooling layers and 

is having 0.83 million parameters. The accuracy and loss 

graph of the training and validation of the model is shown 

in Figure 8. The testing accuracy, precision, recall, and F 

score of the model is 0.976, 0.981, 0.982, and 0.974, 

respectively.  

 

Figure 8: Training and Validation of CNN model 5 

(Accuracy and loss graphs) 

It can be seen from Table 3 that CNN model 2 and 4 

outperform all the individual models in term of accuracy, 

precision, recall, and F1 score. The combined ROC curve 

of all the models is shown in Figure 6 below. To improve 

the accuracy further, ensemble modeling is used. In 

ensemble modeling, all the ensemble models i.e. the 

majority voting, unweighted average, and weighted 

average ensemble classifiers, achieved better results than 

individual models. The majority voting ensemble 

classifier achieved the highest testing accuracy of 0.991 

with precision, recall, and F1 score of 0.996, 0.985, and 

0.990, respectively. The testing accuracy, precision, 

recall, and F1 score of unweighted average ensemble 

classifiers are recorded 0.989, 0.995, 0.982, and 0.989, 

respectively. The testing accuracy of the weighted 

ensemble classifier is 0.990, which is slightly higher than 

the unweighted ensemble classifiers. Also, the value of 

precision-recall and F1 score of the weighted ensemble 

classifier is 0.997, 0.982, and 0.989, respectively. 

4 Discussion   

In the prosed work, a multi-model ensemble classifier 

is presented. The ensemble model combines the 

prediction of various customized CNN models by using 

various ensemble techniques such as the majority voting, 

unweighted average, and weighted average. The dataset 

is made from two publicly available datasets and contains 

16.8k crack and non-crack patches. It can be seen in 

Table 3 that the ensemble models show better 

performance as compared to individual classifiers for 

crack and non-crack classification. The proposed models 

successfully achieved above 98% to classify between 

crack and Non-crack patches. It is found that all the 

proposed ensemble models achieve the best accuracy, 

precision, recall, and F1 score in comparison with the 

individual CNN models. The performance of individual 

CNN models (CNN Model 1, 2, 3, 4, and 5) are 

comparable with each other.  

 

CNN Model 2

CNN Model 3

CNN Model 4

CNN Model 5
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Model Confusion Matrices Testing 

Accuracy 

Precision Recall F score 

 

Model1 

Class Crk 

(0) 

N-Crk (1)   

   

0.982 

 

 

0.921 

 

 

0.951 Crk (0) 

N-Crk (1) 

1369 25 0.928 

116 1290  

Model 2 Crk (0) 1386 8 0.970 0.994 0.971 0.983 

N-Crk (1) 40 1366  

Model 3 Crk(0) 1389 5 0.953 0.996 0.950 0.973 

N-Crk (1) 72 1334  

Model 4 Crk (0) 1387 7 0.966 0.995 0.967 0.981 

N-Crk (1) 46 1360  

Model 5 Crk (0) 1378 26 0.976 0.981 0.968 0.974 

N-Crk (1) 45 1351  

E1: Majority Voting Crk (0) 1389 5 0.991 0.996 0.985 0.990 

N-Crk (1) 31 1375  

E2: UnWeighted 

Average 

Crk (0) 1387 4 0.989 0.995 0.982 0.989 

N-Crk (1) 42 1364  

E3: Weighted 

Average 

Crk (0) 1390 4 0.990 0.997 0.982 0.989 

N-Crk (1) 28 1381  

 

Crk: Crack                N-Crk: Non-crack  

Table 3: Overall Experimental Results  

Figure 7: ROC curve (receiver operating characteristic curve) of all CNN 

individual models 
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The proposed model has the capability to enhance the 

performance of individual deep learning models and is 

very useful in the automatic detection of concrete cracks. 

The proposed framework is designed from a combination 

of less computational CNN architectures. The proposed 

system can be modified by adding more damage types of 

concrete structures in the dataset. The proposed 

framework can be easily used for a real-time robotic 

video inspection system. One of the drawbacks of the 

proposed system is its dependance on the base CNN 

models. If the accuracy of one of the models is degraded 

the overall accuracy will be affected. 

5 Conclusion  

In the proposed work, a new deep learning-based 

ensemble classifier is proposed by combining the 

predictions of various CNN models. The performance of 

the proposed Ensemble classifier is compared with 

individual CNN architectures in terms of testing accuracy, 

precision, recall, and F1 score. For the dataset creation, 

two publicly available datasets are selected and 

combined to provide variance between data samples. 

Extensive experiments were conducted by training 

individual CNN models to investigate their performance. 

The prediction from these models are then combine or 

ensembled to improve the performance of Concrete 

Crack Detection Model. From the experiments and above 

discussion, it can be concluded that the proposed multi-

model ensemble classifier can be used for crack detection 

in concrete structures. As the current study was based on 

crack detection in static images, therefore, in the future, 

we are planning to explore crack detection in video 

streams of concrete structures using end to end deep 

learning techniques.    
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